When Does Disengagement Correlate with Learning in Spoken Dialog Computer Tutoring?

نویسندگان

  • Katherine Forbes-Riley
  • Diane J. Litman
چکیده

We investigate whether an overall student disengagement label and six different labels of disengagement type are predictive of learning in a spoken dialog computer tutoring corpus. Our results show first that although students’ percentage of overall disengaged turns negatively correlates with the amount they learn, the individual types of disengagement correlate differently with learning: some negatively correlate with learning, while others don’t correlate with learning at all. Second, we show that these relationships change somewhat depending on student prerequisite knowledge level. Third, we show that using multiple disengagement types to predict learning improves predictive power. Overall, our results suggest that although adapting to disengagement should improve learning, maximizing learning requires different system interventions depending on disengagement type.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

When Does Disengagement Correlate with Performance in Spoken Dialog Computer Tutoring?

In this paper we investigate how student disengagement relates to two performance metrics in a spoken dialog computer tutoring corpus, both when disengagement is measured through manual annotation by a trained human judge, and also when disengagement is measured through automatic annotation by the system based on a machine learning model. First, we investigate whether manually labeled overall d...

متن کامل

Speech recognition performance and learning in spoken dialogue tutoring

Speech recognition errors have been shown to negatively correlate with user satisfaction in evaluations of task-oriented spoken dialogue systems. In the domain of tutorial dialogue systems, however, where the primary evaluation metric is student learning, there has been little investigation of whether speech recognition errors also negatively correlate with learning. In this paper we examine co...

متن کامل

Content-Learning Correlations in Spoken Tutoring Dialogs at Word, Turn, and Discourse Levels

We study correlations between dialog content and learning in a corpus of human-computer tutoring dialogs. Using an online encyclopedia, we first extract domainspecific concepts discussed in our dialogs. We then extend previously studied shallow dialog metrics by incorporating content at three levels of granularity (word, turn and discourse) and also by distinguishing between students’ spoken an...

متن کامل

TODO: This is a placeholder. Final title will be filled later

Speech recognition errors have been shown to negatively correlate with user satisfaction in evaluations of task-oriented spoken dialogue systems. In the domain of tutorial dialogue systems, however, where the primary evaluation metric is student learning, there has been little investigation of whether speech recognition errors also negatively correlate with learning. In this paper we examine co...

متن کامل

Recognizing student emotions and attitudes on the basis of utterances in spoken tutoring dialogues with both human and computer tutors

While human tutors respond to both what a student says and to how the student says it, most tutorial dialogue systems cannot detect the student emotions and attitudes underlying an utterance. We present an empirical study investigating the feasibility of recognizing student state in two corpora of spoken tutoring dialogues, one with a human tutor, and one with a computer tutor. We first annotat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011